
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-
video-element.html#video

4.8.6 The video element

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.
Palpable content.

Contexts in which this element can be used:
Where embedded content is expected.

Content model:

If the element has a src attribute: zero or more track elements, then
transparent, but with no media element descendants.
If the element does not have a src attribute: zero or more source elements,
then zero or more track elements, then transparent, but with no media
element descendants.

Content attributes:
Global attributes
src
crossorigin
poster
preload
autoplay
mediagroup
loop
muted
controls
width
height

DOM interface:

interface HTMLVideoElement : HTMLMediaElement {
 attribute unsigned long width;
 attribute unsigned long height;
 readonly attribute unsigned long videoWidth;
 readonly attribute unsigned long videoHeight;
 attribute DOMString poster;
};

A video element is used for playing videos or movies, and audio files with captions.

Content may be provided inside the video element. User agents should not show this
content to the user; it is intended for older Web browsers which do not support video,
so that legacy video plugins can be tried, or to show text to the users of these older
browsers informing them of how to access the video contents.

In particular, this content is not intended to address accessibility concerns. To
make video content accessible to the blind, deaf, and those with other physical
or cognitive disabilities, a variety of features are available. Captions can be
provided, either embedded in the video stream or as external files using the
track element. Sign-language tracks can be provided, again either embedded in
the video stream or by synchronizing multiple video elements using the
mediagroup attribute or a MediaController object. Audio descriptions can be
provided, either as a separate track embedded in the video stream, or a
separate audio track in an audio element slaved to the same controller as the
video element(s), or in text form using a WebVTT file referenced using the track
element and synthesized into speech by the user agent. WebVTT can also be
used to provide chapter titles. For users who would rather not use a media
element at all, transcripts or other textual alternatives can be provided by
simply linking to them in the prose near the video element. [WEBVTT]

The video element is a media element whose media data is ostensibly video data,
possibly with associated audio data.

The src, preload, autoplay, mediagroup, loop, muted, and controls attributes are the
attributes common to all media elements.

The poster attribute gives the address of an image file that the user agent can show
while no video data is available. The attribute, if present, must contain a valid non-
empty URL potentially surrounded by spaces.

If the specified resource is to be used, then, when the element is created or when the
poster attribute is set, changed, or removed, the user agent must run the following
steps to determine the element's poster frame:

1. If there is an existing instance of this algorithm running for this video element,
abort that instance of this algorithm without changing the poster frame.

2. If the poster attribute's value is the empty string or if the attribute is absent,
then there is no poster frame; abort these steps.

3. Resolve the poster attribute's value relative to the element. If this fails, then
there is no poster frame; abort these steps.

4. Fetch the resulting absolute URL, from the element's Document's origin. This
must delay the load event of the element's document.

5. If an image is thus obtained, the poster frame is that image. Otherwise, there
is no poster frame.

The image given by the poster attribute, the poster frame, is intended to be a
representative frame of the video (typically one of the first non-blank frames)
that gives the user an idea of what the video is like.

When no video data is available (the element's readyState attribute is either
HAVE_NOTHING, or HAVE_METADATA but no video data has yet been obtained at all, or the
element's readyState attribute is any subsequent value but the media resource does
not have a video channel), the video element represents the poster frame.

When a video element is paused and the current playback position is the first frame
of video, the element represents the poster frame, unless a frame of video has
already been shown, in which case the element represents the frame of video
corresponding to the current playback position.

When a video element is paused at any other position, and the media resource has a
video channel, the element represents the frame of video corresponding to the
current playback position, or, if that is not yet available (e.g. because the video is
seeking or buffering), the last frame of the video to have been rendered.

When a video element whose media resource has a video channel is potentially
playing, it represents the frame of video at the continuously increasing "current"
position. When the current playback position changes such that the last frame
rendered is no longer the frame corresponding to the current playback position in the
video, the new frame must be rendered. Similarly, any audio associated with the
media resource must, if played, be played synchronized with the current playback
position, at the element's effective media volume.

When a video element whose media resource has a video channel is neither
potentially playing nor paused (e.g. when seeking or stalled), the element represents
the last frame of the video to have been rendered.

Which frame in a video stream corresponds to a particular playback position is
defined by the video stream's format.

The video element also represents any text track cues whose text track cue active
flag is set and whose text track is in the showing or showing by default modes.

In addition to the above, the user agent may provide messages to the user (such as
"buffering", "no video loaded", "error", or more detailed information) by overlaying text
or icons on the video or other areas of the element's playback area, or in another
appropriate manner.

User agents that cannot render the video may instead make the element represent a
link to an external video playback utility or to the video data itself.

When a video element's media resource has a video channel, the element provides a
paint source whose width is the media resource's intrinsic width, whose height is the
media resource's intrinsic height, and whose appearance is the frame of video
corresponding to the current playback position, if that is available, or else (e.g. when
the video is seeking or buffering) its previous appearance, if any, or else (e.g.
because the video is still loading the first frame) blackness.

video . videoWidth

video . videoHeight

These attributes return the intrinsic dimensions of the video, or zero if the
dimensions are not known.

The intrinsic width and intrinsic height of the media resource are the dimensions of
the resource in CSS pixels after taking into account the resource's dimensions,
aspect ratio, clean aperture, resolution, and so forth, as defined for the format used
by the resource. If an anamorphic format does not define how to apply the aspect
ratio to the video data's dimensions to obtain the "correct" dimensions, then the user
agent must apply the ratio by increasing one dimension and leaving the other
unchanged.

The videoWidth IDL attribute must return the intrinsic width of the video in CSS
pixels. The videoHeight IDL attribute must return the intrinsic height of the video in
CSS pixels. If the element's readyState attribute is HAVE_NOTHING, then the attributes
must return 0.

The video element supports dimension attributes.

In the absence of style rules to the contrary, video content should be rendered inside
the element's playback area such that the video content is shown centered in the
playback area at the largest possible size that fits completely within it, with the video
content's aspect ratio being preserved. Thus, if the aspect ratio of the playback area
does not match the aspect ratio of the video, the video will be shown letterboxed or
pillarboxed. Areas of the element's playback area that do not contain the video
represent nothing.

In user agents that implement CSS, the above requirement can be implemented
by using the style rule suggested in the rendering section.

The intrinsic width of a video element's playback area is the intrinsic width of the
video resource, if that is available; otherwise it is the intrinsic width of the poster
frame, if that is available; otherwise it is 300 CSS pixels.

The intrinsic height of a video element's playback area is the intrinsic height of the
video resource, if that is available; otherwise it is the intrinsic height of the poster
frame, if that is available; otherwise it is 150 CSS pixels.

User agents should provide controls to enable or disable the display of closed
captions, audio description tracks, and other additional data associated with the
video stream, though such features should, again, not interfere with the page's
normal rendering.

User agents may allow users to view the video content in manners more suitable to
the user (e.g. full-screen or in an independent resizable window). As for the other
user interface features, controls to enable this should not interfere with the page's

normal rendering unless the user agent is exposing a user interface. In such an
independent context, however, user agents may make full user interfaces visible,
with, e.g., play, pause, seeking, and volume controls, even if the controls attribute is
absent.

User agents may allow video playback to affect system features that could interfere
with the user's experience; for example, user agents could disable screensavers
while video playback is in progress.

The poster IDL attribute must reflect the poster content attribute.

This example shows how to detect when a video has failed to play correctly:

<script>
 function failed(e) {
 // video playback failed - show a message saying why
 switch (e.target.error.code) {
 case e.target.error.MEDIA_ERR_ABORTED:
 alert('You aborted the video playback.');
 break;
 case e.target.error.MEDIA_ERR_NETWORK:
 alert('A network error caused the video download to fail
part-way.');
 break;
 case e.target.error.MEDIA_ERR_DECODE:
 alert('The video playback was aborted due to a corruption
problem or because the video used features your browser did not
support.');
 break;
 case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
 alert('The video could not be loaded, either because the
server or network failed or because the format is not supported.');
 break;
 default:
 alert('An unknown error occurred.');
 break;
 }
 }
</script>
<p><video src="tgif.vid" autoplay controls
onerror="failed(event)"></video></p>
<p>Download the video file.</p>

4.8.7 The audio element

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.
If the element has a controls attribute: Palpable content.

Contexts in which this element can be used:
Where embedded content is expected.

Content model:

If the element has a src attribute: zero or more track elements, then
transparent, but with no media element descendants.
If the element does not have a src attribute: zero or more source elements,
then zero or more track elements, then transparent, but with no media
element descendants.

Content attributes:
Global attributes
src
crossorigin
preload
autoplay
mediagroup
loop
muted
controls

DOM interface:

[NamedConstructor=Audio(),
 NamedConstructor=Audio(DOMString src)]
interface HTMLAudioElement : HTMLMediaElement {};

An audio element represents a sound or audio stream.

Content may be provided inside the audio element. User agents should not show this
content to the user; it is intended for older Web browsers which do not support audio,
so that legacy audio plugins can be tried, or to show text to the users of these older
browsers informing them of how to access the audio contents.

In particular, this content is not intended to address accessibility concerns. To
make audio content accessible to the deaf or to those with other physical or
cognitive disabilities, a variety of features are available. If captions or a sign
language video are available, the video element can be used instead of the
audio element to play the audio, allowing users to enable the visual
alternatives. Chapter titles can be provided to aid navigation, using the track
element and a WebVTT file. And, naturally, transcripts or other textual
alternatives can be provided by simply linking to them in the prose near the
audio element. [WEBVTT]

The audio element is a media element whose media data is ostensibly audio data.

The src, preload, autoplay, mediagroup, loop, muted, and controls attributes are the
attributes common to all media elements.

When an audio element is potentially playing, it must have its audio data played
synchronized with the current playback position, at the element's effective media
volume.

When an audio element is not potentially playing, audio must not play for the
element.

audio = new Audio([url])

Returns a new audio element, with the src attribute set to the value passed in
the argument, if applicable.

Two constructors are provided for creating HTMLAudioElement objects (in addition to
the factory methods from DOM Core such as createElement()): Audio() and
Audio(src). When invoked as constructors, these must return a new
HTMLAudioElement object (a new audio element). The element must have its preload
attribute set to the literal value "auto". If the src argument is present, the object
created must have its src content attribute set to the provided value, and the user
agent must invoke the object's resource selection algorithm before returning. The
element's document must be the active document of the browsing context of the
Window object on which the interface object of the invoked constructor is found.

4.8.8 The source element

Categories
None.

Contexts in which this element can be used:

As a child of a media element, before any flow content or track elements.

Content model:
Empty.

Content attributes:
Global attributes
src
type
media

DOM interface:

interface HTMLSourceElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString type;
 attribute DOMString media;
};

The source element allows authors to specify multiple alternative media resources for
media elements. It does not represent anything on its own.

The src attribute gives the address of the media resource. The value must be a valid
non-empty URL potentially surrounded by spaces. This attribute must be present.

Dynamically modifying a source element and its attribute when the element is
already inserted in a video or audio element will have no effect. To change what
is playing, just use the src attribute on the media element directly, possibly
making use of the canPlayType() method to pick from amongst available

resources. Generally, manipulating source elements manually after the
document has been parsed is an unncessarily complicated approach.

The type attribute gives the type of the media resource, to help the user agent
determine if it can play this media resource before fetching it. If specified, its value
must be a valid MIME type. The codecs parameter, which certain MIME types define,
might be necessary to specify exactly how the resource is encoded. [RFC4281]

The following list shows some examples of how to use the codecs= MIME parameter
in the type attribute.

H.264 Constrained baseline profile video (main and extended video compatible)
level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E,
mp4a.40.2"'>

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity
AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E,
mp4a.40.2"'>

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4
container

<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E,
mp4a.40.2"'>

H.264 'High' profile video (incompatible with main, baseline, or extended
profiles) level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.64001E,
mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in
MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8,
mp4a.40.2"'>

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC
audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240,
mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container
<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8,
samr"'>

Theora video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora,
vorbis"'>

Theora video and Speex audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora,
speex"'>

Vorbis audio alone in Ogg container
<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

Speex audio alone in Ogg container
<source src='audio.spx' type='audio/ogg; codecs=speex'>

FLAC audio alone in Ogg container
<source src='audio.oga' type='audio/ogg; codecs=flac'>

Dirac video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="dirac,
vorbis"'>

The media attribute gives the intended media type of the media resource, to help the
user agent determine if this media resource is useful to the user before fetching it. Its
value must be a valid media query.

The default, if the media attribute is omitted, is "all", meaning that by default the
media resource is suitable for all media.

If a source element is inserted as a child of a media element that has no src attribute
and whose networkState has the value NETWORK_EMPTY, the user agent must invoke
the media element's resource selection algorithm.

The IDL attributes src, type, and media must reflect the respective content attributes
of the same name.

If the author isn't sure if the user agents will all be able to render the media resources
provided, the author can listen to the error event on the last source element and
trigger fallback behavior:

<script>
 function fallback(video) {
 // replace <video> with its contents
 while (video.hasChildNodes()) {
 if (video.firstChild instanceof HTMLSourceElement)
 video.removeChild(video.firstChild);
 else
 video.parentNode.insertBefore(video.firstChild, video);
 }
 video.parentNode.removeChild(video);
 }
</script>
<video controls autoplay>
 <source src='video.mp4' type='video/mp4; codecs="avc1.42E01E,
mp4a.40.2"'>
 <source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'
 onerror="fallback(parentNode)">
 ...
</video>

